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Abstract: A new approach to the symbolic computation of the

zero dynamics for affine systems is described. The method is far

less computationally burdensome than alternative approaches and it

has been successfully applied to systems of moderate complexity.

An implementation of the algorithm in the Mathematica language is

described and an example is provided.

1. Introduction

Over the past several years a number of investigators have

developed the connection between variable structure control theory

and smooth feedback linearization of affine nonlinear systems, e.g.

[1, 2]. Both approaches to control system design share common

elements including certain constructions like reduction to normal

form. Also, in both cases, as in all variable structure methods, the

zero dynamics play an essential role. In circumstances where the

system must operate over a wide range of parameter values, such

as described in [3], understanding the parametric dependence of the

zero dynamics is essential to control system design.

Application of the theory to nonlinear systems beyond text

book level require development of computer tools that implement

the lengthy differential–algebraic calculations that accompany the

theory. A number of investigators have considered the

implementation of the required constructions in symbolic

computation languages such as MACSYMA, Mathematica and

Maple [4-6]. The symbolic calculation of the zero dynamics has not

yet been adequately resolved — even for the simple case of well

defined relative degree. To our knowledge, only de Jager has

seriously considered the construction of the zero dynamics via

computer algebra, and in [6] he concludes that such calculations are

not yet viable for moderate scale problems. The approach described

in [6] is based on the construction of the local normal form [7]

which requires solving certain sets of nonlinear differential

equations in order to identify the necessary coordinate

transformations.

In this paper we describe an entirely different approach to the

calculation of zero dynamics which is far less computationally

demanding. The method is based on the characterization of zero

dynamics given in [2]. We illustrate the calculations with an

example that includes, as a special case, a problem described in

[6].

2. Computation of Normal Forms

In the following we consider affine nonlinear dynamics of the form

ẋ = f (x) + G(x)u (1a)

y = h(x) (1b)

First, we summarize the standard reduction to normal form [7] and

give our characterization of zero dynamics, following [2, 3, 8].

Then we describe an approach to computing the zero dynamics.

Definition of the Normal Form

Denote the kth Lie (directional) derivative of the scalar function

φ(x) with respect to the vector field f(x) by Lk
f (φ). Now, by

successive differentiation of the outputs y in (1b) we arrive at the

following definitions for the list of integers ri, the column vector

α(x) and the matrix ρ(x):

ri:= inf{k| Lg j
(Lf

k −1(hi )) ≠ 0 for at least one j} (2a)

α i (x):= Lf
ri (hi ), i = 1,..,m (2b)

ρij (x):= Lg j
(Lf

ri −1(hi )), i, j = 1,..m (2c)

Also define the vector   zi ∈R ri ,i = 1,...,m, as

  

z:=

z1

z2

:

zm

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, zi ∈R ri ,i = 1,...,m (3a)



where

zi
k (x) = Lf

k −1(hi ), k = 1,..,ri and i = 1,..,m (3b)

It is a straightforward calculation to verify that the variables z

defined by (3) satisfy the relation

ż = Az + E[α(x) + ρ(x)u] (4a)

y = Cz (4b)

where the only nonzero rows of E are the m rows r1,r1+r2,..,r and

these form the identity Im, the only non zero columns of C are the

columns 1,r1+1,r1+r2+1,..,r-rm+1 and these form the identity Im,

and

  
A = diag(A1,..., Am ), Ai =

0 Iri −1

0 0
⎡
⎣⎢

⎤
⎦⎥

∈R ri ×ri (5)

Equation (4) is the point of departure for the variable structure

design as described in [2]. It constitutes a regular form in the sense

of [9].

In the following analysis, we will make use of the following

elementary, but important, lemma:

Lemma 1:  Suppose that ρ(x) has continuous first
derivatives with det{ρ(x)} ≠ 0 on   } 0 = {x|z(x) = 0}. Then
∂z(x) / ∂x  is of maximum rank on the set

  } 0 = {x|z(x) = 0}.

Proof: [7]. j

The Lemma is extremely important because it relates the

invertibility of the decoupling matrix with the geometry of the set

}0. With it, we can obtain several important results, one of which

we state here.

Proposition 1:  Suppose that ρ(x) has continuous first
derivatives with det{ρ(x)} ≠ 0 on   } 0 = {x|z(x) = 0}. Then
}0 is a regular, n-r dimensional submanifold of Rn and any
trajectory segment x(t), t ∈T, T an open interval of R1,
which satisfies h(x(t)) = 0  on T lies entirely in }0 .
Moreover, the control which obtains on T is

u0 (x) = −ρ−1(x)α(x) (6)

and every such trajectory segment with boundary condition
x(t0 ) = x0 , t0 ∈T satisfies

ẋ = f (x) − G(x)ρ−1(x)α(x), z(x(t0 )) = 0 (7)

Proof:   [2] j

Note that the manifold }0 defined by z(x) = 0  is invariant with

respect to (7) so that any motion beginning in it remains therein.

Indeed, (7) defines a flow on }0 with all trajectories satisfying

y(t) = h(x(t)) ≡ 0. This justifies reference to (7) as the zero output

constrained dynamics and to }0 as the zero dynamics manifold. We

refer to (7) as a global  representation of the zero dynamics. In

some applications a global characterization of the zero dynamics is

essential [2, 8].

The construction described above will be successful only if

det{ρ(x)} ≠ 0on }0. There does exist a remedy if it is not.

Dynamic extension as described in [7] can provide a useful repair.

More generally, conditions for decoupling via nonlinear dynamic

feedback (of which the above construction augmented with

dynamic extension is a special case) are given by Descusse and

Moog [10] and Huijberts et al [11]. We will not consider that case

here. It is assumed henceforth that the matrix ρ(x) is nonsingular

as needed. In this case, we can apply the feedback control law

u = −ρ−1(x)[α(x) − v] (8)

where v is a new control input. Thus, we have the linearized input-

output model

ż = Az + Ev (9a)

y = Cz (9b)

Note that the control law (8) simultaneously linearizes the input-

output relation and decouples some of the dynamics from the

output.

It is not uncommon to refer to the variables z as the linearizable

coordinates. The terminology of ‘coordinates’ is justified by the

maximal rank condition in the following way. Let Z: Rn→Rr

denote the map realized as the function z(x). By virtue of the

maximal rank assumption and the implicit function theorem we can

choose local coordinates (y1,..,yn) on Rn near any point x0[}0

such that Z(y) = (y1,..,yr). In terms of these coordinates }0 is

defined by y1=0,..,yr=0. As a matter of fact, the first r components

correspond to the level sets z(x)=c which exist for all c in some

neighborhood of the origin in Rr. The remaining components j :=

(yr+1,..,yn) provide local coordinates on }0. Thus, the above

formal calculations make sense because the condition

det{ρ(x)} ≠ 0 insures the existence of a local (around x0) change

of coordinates x→(j,z), j[Rn-r, z[Rr such that

ξ̇ = F(ξ , z) (10a)

ż = Az + E[α(x(ξ , z)) + ρ(x(ξ , z))] (10b)

y-=Cz (10c)

Equation (10) is frequently referred to as the local normal form of

(1). Also, in view of the above discussion and (9), it is common to

refer to (10a) as the internal dynamics and (10b) as the linearizable

dynamics . If z is set to zero in (10a) then we have a local

representation of the zero dynamics.

Computing the Zero Dynamics

One approach to computing the local zero dynamics is to obtain the

internal dynamics (10a) and then set z=0. An implementation of



this calculation is described in [6]. We will describe an alternative.

Note that the functions z(x) can be directly computed using (3).

Once they are obtained, we are in a position to compute the local

form of the zero dynamics near any point x0[}0 in the following
way. Without loss of generality assume x0 = 0. Now, split

z(x)into its linear and nonlinear parts:

z(x) = Ax + N(x), A = ∂z

∂x
(0) (11)

We assume that x0 = 0 is a regular point (r is nonsingular) so that

A is of full rank. Let A* denote a right inverse of A and define K

such that its columns span ker A. Define new coordinates v,w so

that

x = A * v + Kw (12)

Then on the zero dynamics manifold, we have

v + N(A * v + Kw) = 0 (13)

Clearly, the Implicit Function Theorem guarantees the existence of

a local solution to (13) v * (w), that is

v * (w) + N(A * v * (w) + Kw) = 0 (14)

on a neighborhood of w = 0, and v * (0) = 0. Furthermore,

v * (w) can be efficiently estimated because the mapping

vi+1 = −N(A * vi + Kw) (15)

is a contraction. In fact, we have the following result.

Proposition 2: Suppose z(x)is smooth, and A is of full
rank. Then

(i) there exists a smooth function v * (w) = 0 + O(||w||) ,

(ii) if vi (w) satisfies ||v * −vi ||= O(||w||k ), then vi+1(w) ,
obtained via (15), satisfies

 ||v * −vi+1||= O(||w||2k ) .

Proof: The first conclusion follows directly from the implicit

function theorem and the fact that v * (w) is smooth. To prove the

second, first subtract (15) from (14) to obtain

v * −vi+1 = −N(A * v * +Kw) + N(A * vi + Kw) (16)

Now, consider the function N' (x):= ∂N(x) / ∂x . Since N  is

smooth, with ∂N(0) / ∂x = 0 , we have N' (0) = 0 and by

continuity of the second derivative of N , we conclude that

∂N' (x) / ∂x  is bounded on a neighborhood of x = 0. Let L b e

such a bound on an appropriately defined neighborhood, $, so that

the usual arguments based on the Mean Value Theorem provide

|| N' (x) − N' (y)||≤ L|| x − y|| , for each   x, y ∈$ (17)

Thus, we can write

N(x) − N(x + δx) = N' (x)δx + O(||δx||2 ) (18)

which in view of (17) gives

|| N(x) − N(x + δx)||= O(||δx||2 ) , for   x, y = x + δx ∈$ (19)

In order to apply this result to (16), take x = A * v * +Kw  and
δx = A * (v * −vi ). Then (16) and (19) yield

||v * −vi+1||= O(|| A * (v * −vi )||
2 ) = O(||w||2k ) (20)

which is the desired conclusion. j

Recall the global form of the zero dynamics:

ẋ = f (x) − G(x)ρ−1(x)α(x)

which defines the zero dynamics flow everywhere on }0. Near x0

we simply project the flow onto the tangent space to }0 at x0 . K

has a left inverse K* so that

ẇ = K * f (x * (w)) − K * G(x * (w))ρ−1(x * (w))α(x * (w))

x * (w) = A * v * (w) + Kw
(21)

Assembly of the zero dynamics in the form of equation (21) via

the constructions described above is typically more efficient than

computing the internal dynamics (10a) because it is not necessary

to solve the partial differential equations that define the

transformations leading to (10a). On the other hand, if those

equations can be (practically) solved the the internal dynamics may

lead to a representation of the zero dynamics with a larger domain

of validity.

We should also add that there are important engineering

applications in which only a global characterization of the zero

dynamics is useful, eg. [2, 8].

Computer Implementation

The control computations have been implemented in a Mathematica

package which has evolved through a number of expansions and

improvements [4, 5]. In its current form, the package is composed

of three parts: a collection of basic geometric tools, a set of basic

nonlinear control functions, and a set of advanced nonlinear control

functions. Some of the available functions are summarized in

Tables 1 and 2.

To compute the zero dynamics, it is first necessary to compute

the linearizing control and the partial transformation that defines the

linearizable states. Appendix 1 includes a Mathematica program for

computing the zero dynamics for the example problem. It illustrates

the sequence of computations.

3. Example

In this section we present an example based on a simple ground

vehicle similar to that described in [6]. Our intent is to illustrate the

computation of the zero dynamics and also to highlight certain

issues regarding zero dynamics, the understanding of which is

central to the application of variable structure control — or any

other form of decoupling control, for that matter.

Table 1



Some Geometric Tools

Grad::usage=
"Grad[f,varlist] computes the gradient of the
scalar function f with respect to the variables
varlist."

Jacob::usage=
"Jacob[flist,varlist] computes the Jacobian of
the functions flist with respect to the
variables varlist."

LieBracket::usage=
"LieBracket[f,g,varlist] computes the Lie
Bracket of the vector functions f,g with respect
to the variables varlist."

Ad::usage=
"Ad[f,g,varlist,n] computes the nth Adjoint
(iterated Lie Bracket) of the vector fields f,g
with respect to the variables varlist.
Ad[f,g,var,0]=g
Ad[f,g,var,n]=LieBracket[f,Ad[f,g,var,n-1],var]
Ad[f,g,var]=Ad[f,g,var,1] "

LieDerivative::usage=
"LieDerivative[f,h,x] computes the Lie
derivative of the real valued function h of the
vector x along the direction defined by the
vector field f:
  LDf[h](x) = < dh(x),f(x) >

LieDerivative[f,h,x,k] computes the k-th order
Lie derivative of the real valued function h of
the vector x along the direction defined by the
vector field f:
  LD^k f[h](x) = LD^(k-1) f[LDf[h]](x)
  LD^0 f[h](x) = h(x) "

Involutive::usage=
"Involutive[set,x] tests a set of vector fields
to determine if it is involutive. It reports the
result as a value True or False. The argument
`set' must be a list of vector fields, and x
must be a list of the variables."

The simple vehicle that we will consider is illustrated in the

figure 1.

•
T

F

a

b

δ

m , J1

m , I
2

θ R

slope, s
rotation axis

combined tire
inertial parameters

Figure 1. The essential parameters of the example are illustrated in this figure.
The center of mass of the main body is located by the coordinates x and y. Its
attitude of is u. The front wheels rotate an amount d about an axis of slope s,
which is (s=0, results in a vertical axis), s is assumed small as are the tire
inertial parameters.

Table 2

Basic Control Functions

ControllabilityMatrix::usage =
"ControllabilityMatrix[f,g,x] computes the set
of vectors
  Table[Ad[f,g[i],x,k],{k,0,Length[x]-1},
                       {i,1,Length[g]}]"

Controllable::usage=
"Controllable[f,g,x] tests the pair (f,g) to
determine if the system is locally controllable,
that is,does the controllabilty matrix have full
rank? It returns True or False."

FeedbackLinearizable::usage=
"FeedbackLinearizable[f,g,x] tests to see if the
pair (f,g) is exactly linearizable by means of
feedback and a change of coordinates. The pair
(f,g) must be controllable, and the set of
vector fields

  Table[Ad[f,g,x,k],{k,0,Length[x]-2},
                    {i,1,Length[g]}]

must be involutive. The function returns True or
False."

VectorRO::usage=
"VectorRO computes the vector relative order if
a MIMO system. VectorRO[f,g,h,x] where f,g,h can
be functions of x or defined explicitly as lists
of expressions in x"

DecouplingMatrix::usage=
"DecouplingMatrix[f,g,h,x,ro] computes the
decoupling matrix. f,g,h can be functions of x
or lists of expressions in x. x is a list and ro
is the vector relative degree. See VectorRO."

IOLinearize::usage=
"IOLinearize[f,g,h,x] computes a feedback
linearizing & decoupling control. It returns
  {DecoupMat, Nonlin, RelOrder, test1, control}
where,
  DecoupMat - decoupling matrix,
  Nonlin - vector of
    LieDerivative[f,h[[i]],x, RelOrder[[i]]],
  RelOrder - relative order,
  test1 - regions where the decoupling matrix is
          singular,
  control - decoupling control law."

NormalCoordinates::usage=
"NormalCoordinates[f,g,h,x,Vro] returns the
functions z(x) which define the linearizable
states."

LocalZeroDynamics::usage=
"LocalZeroDynamics[f,g,h,x,u0,z] returns a local
representation of  the zero dynamics about the
origin (x=0)   "

The following model incorporates two simplifications; m2 = 0, s

<<1, so that only first order terms in s are included.

θ̇
ẋ

ẏ

δ̇

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ωθ

vx

vy

ωδ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(22a)

Izz + Jzz 0 0 Izz

0 m1 0 0

0 0 m1 0

Izz 0 0 Izz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ω̇θ

v̇x

v̇y

ω̇δ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

0

m1vyωθ

−m1vxωθ

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

f1

f 2

f 3

f 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0 (22b)



The functions fi are given in the appendix. These equations were

derived using a Mathematica package for multibody dynamics [12].

Our goal is to consider the problem of steering the vehicle

along a path of constant radius, and at constant speed Vd. There are

several ways of formulating this problem. One common approach

is to replace the constant radius condition by the requirement that
the angular velocity ωθ  is a constant, say ωd . This leads to a

constant curvature path of radius, with R = Vd / ωd . Thus, we

introduce two output relations

y1 = vx
2 + vy

2 − Vd
2

y2 = ωθ − ωd

 (23)

We are interested in the zero dynamics relative to these two outputs

and the two controls T, F. Notice that in this formulation it is not

necessary to retain the kinematic equations which define the vehicle

location and orientation in the plane — i.e.,θ, x, y . Thus, the

system equations include (22b) and only the last equation of (22a).

We first compute the zero dynamics for the case of motion
along a straight path, ωd = 0, R = ∞ . The vector relative degree is

found to be [1, 1]. Therefore, the zero dynamics involve three first

order differential equations in the zero dynamics ‘state’ variables
w1, w2 , w3. Up to fourth order terms, these equations are:

w1dot={w2},

w2dot={(kappa*(2*a + R*s)*w1)/(2*Izz)
    -(kappa*(a + R*s)*w1^3)/(2*Izz)
    +(kappa*(-2*a + 2*b - R*s)*w3)/(2*Izz*Vd)
    +(kappa*(-2*a + 2*b - R*s)*w3^3)/(12*Izz*Vd^3)
    + w1^2*((kappa*(a + R*s)*w3)/(2*Izz*Vd))
    +w2*((a*kappa*R*s)/(2*Izz*Vd)
    +(a*kappa*R*s*w1*w3)/(2*Izz*Vd^2)
    -(a*kappa*R*s*w3^2)/(4*Izz*Vd^3)
    +w1^2*(-(a*kappa*R*s)/(2*Izz*Vd))},

w3dot={(kappa*w1)/m1 - (kappa*w1^3)/(2*m1)
    -(2*kappa*w3)/(m1*Vd)-(kappa*w3^3)/(3*m1*Vd^3)
    +w1^2*((kappa*w3)/(2*m1*Vd))
    +w2*((kappa*R*s)/(2*m1*Vd)
    +(kappa*R*s*w1*w3)/(2*m1*Vd^2)
    - (kappa*R*s*w3^2)/(4*m1*Vd^3)
    - (kappa*R*s*w3^4)/(16*m1*Vd^5)
    +w1^2*(-(kappa*R*s)/(2*m1*Vd)))}

We can test the stability of the equilibrium point w = 0, by

examining the linearized zero dynamics:

ẇ =
0 1 0

κ (2a+ Rs)

2 Izz

aκRs

2 IzzVd

2κ (b−a)−κRs)

2 IzzVd

κ
m1

κRs

2m1Vd

−2κ
m1Vd

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w (24)

The eigenvalues are readily obtained but they are lengthy functions

of the parameters. Some insight is obtained, however, by

examining the special case, a = b  and s = 0, in which case the

eigenvalues simplify to:

λ1 = − 2κ
m1Vd

, λ2,3 = ± aκ
Izz

(25)

Hence, we see that the zero dynamics are unstable. Because the

eigenvalues vary smoothly as a function of parameters, this

situation will be true for a-b and s small, but not necessarily zero.

Furthermore, since Izz is small, λ2,3 are a pair of ‘parasitic’ zeros,

one of which is far into the right half plane, the other to the left.

Such circumstances occur frequently and need not fatally obviate

the use of variable structure or feedback linearizing control [13,

14]. The physical explanation in the present situation is a weak

control force introduced by the small inertial cross–coupling

produced by the off diagonal Izz terms in the inertia matrix.

4. Conclusions

In this paper, we have described a method for symbolic

computation of the local form of the zero dynamics for affine

systems with well defined vector relative degree. The method is

based on the characterization of zero dynamics given in [2]. It is

efficient because it avoids computing the transformation relations

which reduce the system to local normal form. An implementation

in Mathematica  has been described and an example of its

application given.

Understanding zero dynamics behavior is essential in variable

structure control system design and any other design method which

directly or indirectly exploits decoupling. In applications, it is

necessary to investigate parametric influences on the zero dynamics

and the zero dynamics often constrain the envelope of operation of

nonlinear feedback systems.
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Appendix 1: Program to Generate Zero Dynamics for

Example problem

<<NCBasics` (* Nonlinear Control Package *)
<<GeoTools` (* Diff Geometry Tools *)
(* compute relative degree *)
ro=VectorRO[f,g,h,var];
(* compute feedback ,linearizing/decoupling
control *)
{R1,R2,R3,R4,u}=IOLinearize[f,g,h,var];
(* compute linearizable coordinates *)
z=NormalCoordinates[f,g,h,var,ro]/.{wd->0};
(* shift origin to point of interest *)
{f,g,h,u,z}={f,g,h,u,z}/.{x2->x2+Vd};
(* compute zero dynamics *)
u0=u/.{v1->0,v2->0};
f0=LocalZeroDynamics[f,g,h,var,u0,z];
(* linearize zero dynamics and determine
stability of origin *)
Anu=Jacob[f0,{w1,w2,w3}]/.{w1->0,w2->0,w3->0,b-
>a+nu};
Eigenvalues[Anu/.{nu->0,s->0}]

Appendix 2: Equations Used in Example Problem

                      vy - b wth
f1 = -(b kappa ArcTan[----------])
                          vx

                    vy Cos[delta] + a wth Cos[delta] - vx Sin[delta]
  + a kappa ArcTan[ ------------------------------------------------] Cos[delta]
                    vx Cos[delta] + vy Sin[delta] + a wth Sin[delta]

                     vy Cos[delta] + a wth Cos[delta] - vx Sin[delta]
  +(kappa s(R ArcTan[------------------------------------------------](-1 + 2 Cos[delta])
                     vx Cos[delta] + vy Sin[delta] + a wth Sin[delta]

  + (a R Cos[delta] (2 vx wth - vx wdel Cos[delta] - vx wth Cos[delta] - vy wdel Sin[delta]
                                                        2                   2     2                 2    2
     - vy wth Sin[delta] - a wdel wth Sin[delta] - a wth  Sin[delta])) / (vx  + vy  + 2 a vy wth + a  wth ))) / 2,

                        vy Cos[delta] + a wth Cos[delta] - vx Sin[delta]
f2 = -F - kappa ArcTan[ ------------------------------------------------] Sin[delta]
                        vx Cos[delta] + vy Sin[delta] + a wth Sin[delta]

    + (kappa R s Sin[delta](-2 vx wth + vx wdel Cos[delta] + vx wth Cos[delta]
                                                                            2                    2     2                 2    2
    + vy wdel Sin[delta] + vy wth Sin[delta] + a wdel wth Sin[delta] + a wth  Sin[delta]))/(2 (vx  + vy  + 2 a vy wth + a  wth )),

                  vy - b wth
f3 = kappa ArcTan[----------]
                      vx

                  vy Cos[delta] + a wth Cos[delta] - vx Sin[delta]
   + kappa ArcTan[------------------------------------------------] Cos[delta]
                  vx Cos[delta] + vy Sin[delta] + a wth Sin[delta]

   + (kappa R s Cos[delta] (2 vx wth - vx wdel Cos[delta] - vx wth Cos[delta]
                                                                                                 2     2                 2    2
   - vy wdel Sin[delta] - vy wth Sin[delta] - a wdel wth Sin[delta] - a wth  Sin[delta]))/ (2 (vx  + vy  + 2 a vy wth + a  wth )),

                            vy Cos[delta] + a wth Cos[delta] - vx Sin[delta]
f4 = -T - (kappa R s ArcTan[ ------------------------------------------------]) / 2}
                            vx Cos[delta] + vy Sin[delta] + a wth Sin[delta]
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